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Abstract

With the better availability of healthcare data, such as Elec-
tronic Health Records (EHR), more and more data analyt-
ics methodologies are developed aiming at digging insights
from them to improve the quality of care delivery. There are
many challenges on analyzing EHR, such as high dimen-
sionality and event sparsity. Moreover, different from other
application domains, the EHR analysis algorithms need to
be highly interpretable to make them clinically useful. This
makes representation learning from EHRs of key importance.
In this paper, we propose an algorithm called Predictive Task
Guided Tensor Decomposition (TaGiTeD), to analyze EHRs.
Specifically, TaGiTeD learns event interaction patterns that
are highly predictive for certain tasks from EHRs with su-
pervised tensor decomposition. Compared with unsupervised
methods, TaGiTeD can learn effective EHR representations in
a more focused way. This is crucial because most of the med-
ical problems have very limited patient samples, which are
not enough for unsupervised algorithms to learn meaningful
representations form. We apply TaGiTeD on real world EHR
data warehouse and demonstrate that TaGiTeD can learn rep-
resentations that are both interpretable and predictive.

Introduction

With the rapid development of computer technologies, more
and more healthcare data, such as Electronic Health Records
(EHR), are becoming readily available. In the current big
data era, those healthcare data are invaluable resources that
carry important insights for the various aspects of care de-
livery. Data analytics technologies, such as data mining and
machine learning, are important tools for digging those in-
sights out from the healthcare data.

There are many aspects that are unique for patient EHRs
that make their analysis very challenging. For example,
many heterogeneous medical events, such as diagnosis, pro-
cedures, medications and lab tests are all included. This
makes the dimensionality of EHR very high (because of the
large number of unique medical events). Also every patient
only has a limited number of visits to hospitals or clinical
facilities. Thus the patient EHRs are usually very sparse.
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In order to overcome those challenges, researchers usu-
ally do not directly work with raw EHRs. Instead, they first
project the medical events in a lower dimensional space and
then build follow up analytical algorithms in that space. The
process of obtaining such space is usually called represen-
tation learning, and the different dimensions in that space
are usually referred to novel EHR representations. Many
approaches have been adopted or developed for represen-
tation learning (Bengio, Courville, and Vincent 2013). With
the new representations, not only the dimensionality of EHR
is reduced, but also the entries are becoming denser (Mac-
skassy et al. 2014).

Recently, Ho et al. (Ho, Ghosh, and Sun 2014) proposed
a representation approach from EHR with tensor decompo-
sition. The advantage of their method, comparing to tradi-
tional vector based approaches, is the capability of captur-
ing high order event interactions through tensors. This is
crucial because in reality, it is unlikely only single medi-
cal event contributes to a specific healthcare problem, high
order event interactions always matter. The authors showed
that the learned EHR representations (a.k.a. phenotypes) are
not only leading to better prediction performance, but also
highly interpretable.

However, despite the success, there are still limitations in
those existing tensor based approaches.

• They are unsupervised. Typically unsupervised learning
will need many more samples to achieve meaningful re-
sults comparing to supervised learning methods (Good-
fellow, Courville, and Bengio 2012). Different from other
application domains like image or speech analysis (Hin-
ton et al. 2012), we always have limited patient samples
in healthcare problems, which means we cannot obtain as
many data as we want. This will make the results of com-
pletely unsupervised learning not reliable.

• They are two-stage. Existing algorithms typically work in
a two-stage way. In the first stage they learn novel EHR
representations. In the second stage they build analytical
models, such as predictive models, on top of those repre-
sentations. There is no guarantee that the representations
learned from the first stage can lead to good performance
in the second stage.

In this paper, we propose a novel EHR representation
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learning algorithm called Predictive Task Guided Tensor De-
composition (TaGiTeD). TaGiTeD is based on tensor decom-
position so it can still capture the high order event inter-
actions as those existing methods, but it is guided by spe-
cific prediction tasks through learning specific representa-
tions that can lead to the best prediction performance. In this
way, we achieve a nice balance between interpretability and
performance. Also we learn such representations in an in-
tegrated way by solving an optimization problem with both
representation learning and predictive modeling in the ob-
jective. Efficient solution strategies are developed with prox-
imal gradient methods (Wang et al. 2015a). Experimental re-
sults on large scale real world EHR warehouse are presented
to demonstrate the effectiveness of the proposed algorithm.

Predictive Task Guided Tensor Decomposition

In this section, we first describe the preliminaries of tensor
decomposition and formulate the problem. Finally, we pro-
vide a general overview of the framework and design a con-
crete algorithm for solving the problem.

Notes and Preliminaries

Throughout, scalars are denoted by lowercase letters (a),
vectors by boldface lowercase letters (v), matrices by bold-
face capital letters (A), and higher order tensors by boldface
Euler script letters (X ). We use multi-index notation so that
a boldface i represents the index (i1, . . . , iN ).

The notation ‖.‖ refers to the two-norm for vectors
or Frobenius norm for matrices, i.e., the sum of the
squares of the entries. Let XT ,X−1,X† denote the trans-
pose, inverse, Moore-Penrose pseudoinverse of X. Let
A(1),A(2), . . . ,A(N) represent a sequence of N factor ma-
trices for N dimensions. And ∗ and � denote elementwise
production and elementwise division.

Definition 1. (Tensor Matricization): The mode-n matri-
cization or unfolding of a tensor X is denoted by X(n) and
is of size In × Jn, where Jn ≡ ∏

(m �=n) Im.

Definition 2. (KhatriRao Product): Give two matrices A
and B of sizes I1 × R and I2 × R; then C = A � B is a
matrix of size I1I2 ×R such that

C = [a1 ⊗ b1 a2 ⊗ b2 ... aR ⊗ bR]

where the Kronecker product ⊗ of two vectors a,b of size
I1 and I2 is a vector of length I1I2

Definition 3. (CANDECOMP/PARAFAC Decomposition):
CP decomposes a tensor into a sum of component rank-
one tensors. For example, given a third-order tensor X ∈
R

(I×J×K), we wish to write it as

X ≈
R∑

r=1

(ar · br · cr) (1)

where R is a positive integer, and ar ∈ R
I,br ∈ R

J, cr ∈
R

K, for r = 1, ..., R. The factor matrices refer to the
combination of the vectors from the rank-one components,
i.e., A =[a1 a2 ... aR ] and likewise for B and C. CP
model can be concisely expressed as:X ≈ [�λ;A,B,C]

Formulation

We formulate our model TaGiTeD as a constrained ten-
sor optimization where the constraints are a kind of penalty
terms for guidance. Thus our model is composed of two
terms: Poisson Tensor Decomposition and Factor Matrix
Constraints. The general formulation is:

min
M

L (X ,M) = min
M

{Ψ(X ,M) + Υ (M)} (2)

where,

Ψ(X ,M) =
∑

mi − xi logmi (3)

Υ (M) =
1

|ζ|
∑

loss
(
A(n),Y(n)|H(n)

)
(4)

s.t. X ∈ R
(I1,...,IN ),

M = [�λ;A(1),A(2), ...,A(N)] ∈ Ωλ ×Ω1 ×Ω2 × ...×ΩN ,

Ωn =
{
A ∈ [γn, 1]

In×TR |‖ar‖ = 1 for r = 1, ...,TR

}
,

Y(n) ∈ In × 1,H : A(n) �→ φ
(
A(n);Θ

)
,

Ωλ = [0,+∞)R ,TR ∈ R
+

X is the partially observed tensor with size (I1, ..., IN )
which is constructed by the count data of patient events from
the EHR. M is the unknown estimated tensor with same
size, which can be represented as the tensor itself or its con-
stituent parts. The mi and xi represent the element of X
and M with the multi-index notation i. Y(n) represents the
nth predictive task target. ζ is the total instances in training
set where we have label Y(n). That means, for example, we
let Y (n)

i = 1 or - 1 whether a patient i will be hospitalized
or not. With the explicit label information, we can define
the regularization equation (4) directly with a discriminative
model as penalty term: loss

(
A(n),Y(n)|H(n)

)
. The H(n)

can be different for different prediction models, which sets
the constraints on the nth factor matrices A(n). Therefore
there may be N predictive tasks guiding the estimated ten-
sor M in N dimensions. We set TR as the possible rank of
original tensor in advance.

Alternating Poisson Regression

In many applications such as chemometrics, the model can
be fit to the data using a least squares (LS) criteria, implicitly
assuming that the random variation in the tensor data follows
a Gaussian distribution. In the case of count data, however,
the random variation is better described via a Poisson distri-
bution xi ∼ Poisson(mi) (Chi et al. 2011). Thus, for count
data we should minimize the (generalized) Kullback-Leibler
(KL) divergence like equation (3) which equals the negative
log-likelihood of the observations up to an additive constant.

In this paper, we extend the CP-APR (Alternating Poisson
Regression) algorithm (Chi et al. 2011) fitting the nonnega-
tive Poisson tensor decomposition (CP-APR) to count data.
We note that we can express the same M in different ways,
i.e.

M = [A(1), ...,A(i−1),B(i),A(i+1), ...,A(N)] (5)
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where
B(i) = A(i)Λ, Λ = diag (λ) (6)

The weights above are omitted because they are absorbed
into the nth mode. From equation (5), we can express M as
M(i) = B(i)Π(i), where B(i) is defined in equation (6) and
we use the matrix Π(i) to denote the fixed parts as follows,

Π(i) ≡
(
A(1) � ...�A(i−1) �A(i+1) � ...�A(N)

)T

(7)

Thus, we can rewrite the objective function in equation (3)
as

Ψ(X ,M) = eT
[
B(i)Π(i) −X(i) ∗ log

(
B(i)Π(i)

)]
e (8)

where e is the vector of all ones, and the log function is
applied element wise. X(i) is the mode-i matricization of the
observed tensor. The updates for �λ and A(i) come directly
from B(i).

Factor Matrix Constraints

The features obtained by tensor decomposition can be di-
rectly used for various prediction tasks (Classification and
Regression). As a kind of unsupervised representation learn-
ing method, tensor decomposition do not contain any cat-
egory (label of a class) information which is often useful
for representation learning. To exploit such information, we
make full use of the prediction target to guide our tensor
decomposition. We discuss the cases of penalty terms from
Classification and Regression respectively.

Classification Suppose the prediction task is to predict
whether a patient Pn will be hospitalized in the next year.
We let Yn = 1 or − 1 represent hospitalization or not. With
the label information, we can define the penalty term Υ (M):

Υ (M) = − 1

|ζ|
∑
n∈ζ

log Pr
(
A(i)

n ,Y(i)
n |H(i)

)
(9)

which is term as average log-loss. Formally we use super-
script (i) to represent the ith factor matrix and subscript n
for the nth instance of dataset. Here, ζ is the total instances
in training set where we have label Y(i). Consider the clas-
sifier is Logistic Regression, we can re-define the cost func-
tion as Pr = 1/

[
1 + exp

(
−Y

(i)
n f(A

(i)
n )

)]
, where the lin-

ear model H : A(i) �→ f
(
A(i)

)
= A(i)Θ+θ and the (Θ, θ)

is parameters in the model H.
In addition to the log-loss for the representation model,

hinge loss can also be used with the linear model H.

Υ (M) =
1

|ζ|
∑
n∈ζ

max
{
0, 1−Y(i)

n f(A(i)
n )

}
(10)

which is corresponded to the SVM classifier. Both regu-
larizations are served as penalty term which can utilize the
target information to guide the overall decomposition.

Regression Suppose the regression problem is to predict
how much a patient Pn will spend on medical services in the
next year. We let Yn represent the medical expense which is
a continuous value. Thus, we use the loss function of linear
regression which is the least-squares function as the penalty
term:

Υ (M) =
1

2|ζ|
∑
n∈ζ

‖Y(i)
n − f(A(i)

n )‖2 (11)

Unified Optimization

The unified framework can be obtained by adding the two
components: Poisson Tensor Decomposition and Factor Ma-
trix Constraints. We solve equation (2) via an alternating ap-
proach which is similar to CP-APR, holding all factor ma-
trices constants except the one being updated, which is pre-
sented in Algorithm 1 TaGiTeD Algorithm .

Log-loss Regularization: Considering the problem for
the ith factor matrix, if we use the Logistic Regression as
the classifier, the penalty term Υ (M) can be same to equa-
tion (9) and the objective function is :

L = min
M,Θ,θ

{
eT

[
B(i)Π(i) −X(i) ∗ log

(
B(i)Π(i)

)]
e

− λ0

|ζ|
∑
n∈ζ

log
(
1 + exp

[
−Yn

(
B(i)

n Θ+ θ
)])

+
λ1

2

(‖Θ‖2 + θ2
)}

(12)

Note that the size of Π(i) is TR × ∏N
j=1,j �=n Ij and the

size of vector Θ is TR×1. The multiplicative update deriva-
tion for the weight factor matrix B(i) with size of Ii × TR
can be computed by taking the partial derivative of the ob-
jective function respect to a single element b(i)pq :

∂L
∂b

(i)
pq

=

∏N
j=1,j �=n Ij∑

l=1

Π
(i)
ql

(
1− x

(i)
pl∑R

r=1 b
(i)
prΠ

(i)
ql

)

−λ0

|ζ|
YpΘq

1 + exp
(
Yp

∑R+1
k=1 b̂

(i)
pk Θ̂k

)
Where, b(i)pq represents the value of matrix B(i) whose in-

dices are (p,q) and likewise for Π(i)
ql and x

(i)
pl . b̂(i)pk is the (q,k)

value of appended matrix B̂(i) with size of Ii × (TR + 1)
which adds a column of 1. Setting the gradient descent step

size to α = b
(i)
pq /

∑∏N
j=1,j �=n Ij

l=1 Π
(i)
ql yields the multiplica-

tive update.The non-negative factor matrix constraints are
also satisfied using the multiplicative update. Generalizing
for the entire factor matrix, the update equation is as fol-
lows:

B
(i)

:= B
(i)∗

[
Φ

(i) − λ0

|ζ| (Yn ∗Θ)�
(
exp

(
B

(i)
Θ ∗ Yn

)
+ E

)]
(13)

where the matrix Φ(i) ≡ [
X(i) �

(
B(i)Π(i)

)]
Π(i)T will

come up repeatedly in this paper. If we do not add any con-
straints, the update equation is :

B(i) := B(i) ∗ Φ(i) (14)

The added parameter Θ in equation (13) can be solved by
just computing the Logistic Regression.

Hinge-loss Regularization: Combining the hinge loss
regularization equation (10) with equation (8), we obtain
the overall objective function which involves a sum of con-
vex differentiable term and convex non-differentiable reg-
ularizations. To update B(i), since the hinge loss is non-
differentiable, we take the general proximal gradient opti-
mization approach.
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If the convex nondifferentiable function is equation (10),
it follows that

B(i) := B(i) ∗ Φ(i) + proxλ1
|ζ|Υ

(
B(i)

)
(15)

where,

proxτΥ

(
B(i)

n

)
= B(i)

n + Yn proj[0,τ ]

⎛
⎝1− Ynf

(
B

(i)
n

)
‖Θ‖2

⎞
⎠Θ′

The proj is defined as proj[0,τ ] (α) =

⎧⎨
⎩
α α ∈ [0, τ ]

0 α < 0

τ α > τ

.

To update (Θ, θ) in the hinge loss regularization, the ob-
jective is to compute exactly the SVM on training data{(

B
(i)
n , Yn

)
|n ∈ N

}

Quadratic-loss Regularization To solve the regression
tasks, we combine the least-square loss function equation
(11) and equation (8). Similar to the optimization of classi-
fication tasks, we can update B(i) .

B(i) := B(i) ∗ Φ(i) − λ1

|ζ|
(
Yn −B(i)Θ

)
ΘT (16)

And the Θ can be computed directly by solving the linear

regression. Θ =
(
B(i)TB(i) + CI

)−1

B(i)TYn

Thus overall representation learning precess is presented
in Algorithm 1 TaGiTeD Algorithm .

Tensor Projection

To avoid the overfitting, we only use the TaGiTeD to com-
pute the training data and project the testing data by set-
ting unconstrained factor matrices fixed. That means we
project the testing data onto the feasible space which is al-
ready trained by TaGiTeD. Suppose the original tensor X =

‖�λ;A(1), A(2), A(3)‖ is a mode-3 tensor. And we need to
compute the factor matrix A(1) as the feature representation.
We split the original tensor X along the mode-1 into train-
ing tensor Xtrain and testing tensor Xtest. First we compute
the supervised tensor decomposition TaGiTeD on Xtrain,
and then use unsupervised tensor decomposition method
to project Xtest by only computing A

(1)
test and reusing the(

A
(2)
train, A

(3)
train

)
.

Experiment Evaluation

In this section, we showed several cases of TaGiTeD on two
real-world EHR datasets which construct small dense ten-
sor and big sparse tensor. Then, we demonstrated the per-
formance of the proposed algorithms and interpretability of
mined representations.

Datasets

We conducted experiments on two real-world EHR datasets.
The data is actually a collection of medical events where
each event can be described as a patient p is required to take
a medicine m for a diagnosis d . The datasets also contain

Algorithm 1 TaGiTeD algorithm (general version).

Input: X ,Y,TR, OutIter, InerIter, TMode, λ1, λ2

Output: M in shape of Eq. 5
1: Initialize M, Θ of H;
2: while not converged and IterNow � OutIter do
3: // For each mode n.
4: for n = 1 to N do
5: if n == TMode then
6: Compute Θ of H given B(n) of TMode;
7: while not converged and iter � InerIter do
8: Update B(n) by Eq. 13 | Eq. 15 | Eq. 16;
9: end while

10: else
11: while not converged and iter � InerIter do
12: Update B(n) by Eq. 14;
13: end while
14: end if
15: end for
16: end while

the hospitalization and medical expenses information of pa-
tients, which can be defined as the predictive targets.

Sparse Big Data focuses on a subset of patients whose
records span over 3 years. It contains 34, 395 patients with
a total of 758 diagnoses, 1, 765 medicines and 34 million
medical events. The proportion of non-zero elements in this
sparse tensor is 0.00747%

Dense Small Data is a subset of previous dataset. It con-
tains 9, 000 patients with a total of 247 diagnoses and 816
medicines.The proportion of non-zero elements in this den-
sor tensor is 0.1626%

We used the datasets above to construct 3-modes ten-
sors which respectively represent patient, diagnosis and
medicine. Each element of the constructed tensor was the
number of the corresponding medical events happened dur-
ing the observation time window (We set observation win-
dow 2 years and prediction window 1 year after observation
window).We evaluated the performance on the tasks of clas-
sification and regression respectively.

• Classification: One-Year Hospitalization Prediction:
we utilized the medical events in the observation window
to predict whether a patient will be hospitalized or not in
the prediction window. We evaluated the preformance in
terms of Area under the ROC curve (AUC) .

• Regression: One-Year Medical Expense Prediction:
We predicted how much a patient will spend in hospital
by utilizing the medical events in the observation window,
and we used two evaluation metrics: the R2 coefficient of
determination and Root Mean Squared Error (RMSE).

Baseline Algorithm

We compared our proposed TaGiTeD algorithm with the
following four methods, Chi-squared based feature selection
(FS), principal components analysis (PCA), Gaussian mix-
ture model (GMM), and nonnegative CP alternation Pos-
sion regression (CP-APR) (Chi et al. 2011) for tensor de-
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Table 1: Regression Result on Small Dense Dataset

Metrics Vec+FS Vec+PCA Vec+GMM CP-APR TaGiTeD-Quad

LinearR RMSE 25.67 37.64 19.41 10.750 7.79
R2 0.1731 0.1675 0.2302 0.2653 0.2830

Table 2: AUC on Small Dense Dataset

Methods LR RF SVM
Vec+FS 0.7230 0.7410 0.7048
Vec+PCA 0.7190 0.695 0.7118
Vec+GMM 0.7476 0.7331 0.7293
CP-APR 0.7593 0.7435 0.7488
TaGiTeD-Log 0.7886 0.7627 0.7665
TaGiTeD-Hinge 0.7771 0.7475 0.7877

Table 3: AUC on Big Sparse Dataset

Methods LR RF SVM
Vec+FS 0.6211 0.6181 0.607
Vec+PCA 0.6121 0.6048 0.5898
Vec+GMM 0.6126 0.6296 0.6128
CP-APR 0.6325 0.6529 0.6266
TaGiTeD-Log 0.653 0.6465 0.6426
TaGiTeD-Hinge 0.6513 0.655 0.6432

composition on count data. FS, PCA and GMM are vector-
based traditional representation learning methods and CP-
APR is tensor-based methods. In vector-based methods, we
concatenated the diagnosis vector to medicine vector to ob-
tain a long combined vector for each patient. Then we learn
the principal components or clusters from training datasets
and transformed the testing datasets based on the learned
models. In CP-APR method, we costructed a original ten-
sor. Each element Xijk represented the count number of
this event happened. Tensor-based baseline algorithms con-
structed training tensor and testing tensor seperately from
training and testing datasets. And after computing training
tensor decomposition, we projected the testing tensor onto it
by fixing unconstrained factor matrices.

Experimental Details

We set the proportion of validation set, training set and test-
ing set 10:7:3. We implemented the FS, PCA, and GMM
based on scikit-learn 0.17. We let K be the number of clus-
ter centers or principal components in the range of [10,200].
For classification task, we used Logistic Regression, Ran-
dom Forests and SVM to train the tasks’ models. In detail,
we set 100 as the number of trees in Random Forests Classi-
fier. For regression task, we used Linear Regression model.
We also computed the 10-folds cross validation on the vali-
dation set for the parameters of models.

Experimental Results

In our first experiment, we evaluated the predictive perfor-
mance of our method on small Dense Dataset. K value rep-
resents the length of learned representations. We first used
the validation dataset to get the K value for each method,

Table 4: Representations of Three Phenotypes

Medicines Diagnoses
Low Molecular Weight Heparin Sodium Chronic kidney

Recombinant Human Erythropoietin Renal failure
Anti-Renal Failure Tablets ...

Levocarnitine Injection
Recombinant Human Erythropoietin β

...
Difenidol Hydrochloride Tablets Acute nasopharyngitis
Paracetamol and Caffeine Tablets Cough

Po Chai Pills Acute laryngitis
Amoxicillin Capsules Conjunctivitis
Norfloxacin Capsules Dizziness & giddiness

... ...
Sufentanil Citrate Injection Diabetes in pregnancy

Tinidazole and Glucose Person consulting
Ampicillin Sodium ...

Oxytocin
Carboprost Methylate

...

then computed the representation learning on the training
dataset, Finally we used the learned representation of the
testing dataset to calculate results. As shown in Table 2, The
TaGiTeD-Log achieved the best performance using Logistic
Regression and Random Forests classifiers. And TaGiTeD-
Hinge could get the best performance using SVM classifier.
This also indicated that using related loss function as penalty
terms could help corresponding representation learning. Ta-
ble 1 shows the regression tasks’ results, and the TaGiTeD-
Quad outperformed the other methods. Both metrics with
good performance shows that TaGiTeD-Quad could extract
directional and effective representations.

Figures 1∼4 shows the detail results of prediction tasks
given different K values in range of [10,100]. We compared
the ability of feature reduction by comparing the results of
representations with same length . LR1 represents Logis-
tic Regression model and LR2 represents Linear Regres-
sion model. The baseline algorithms got poor performance
at small K value and increased slowly. However, our meth-
ods could achieve the peak value of result when K value
equals to 50, which means our methods have better informa-
tion extraction ability.

When we computed Predictive Task Guided Tensor De-
composition on sparse big data, it was hard and time con-
suming to compute whole original tensor even when the in-
ternal memory was big enough. In our implementation, we
constructed the tensor only using the non-zero elements’ in-
dices and values: (vq, c), which adopted the sparse tensor im-
plementation approaches presented in (Chi et al. 2011; Ho,
Ghosh, and Sun 2014). Table 3 shows the preformance of
this experiment, and we can find that the TaGiTeD-Log and
TaGiTeD-Hinge always get better scores using correspond-
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Figure 1: AUC of Classificatin Using LR1

Figure 2: AUC of Classificatin Using RF

Figure 3: AUC of Classificatin Using SVM

Figure 4: R2 of Regression Using LR2

ing classifiers. In general, our method also get good perfor-
mance on sparse big data. Figure 5 shows the runtime com-
parison between CP-APR algorithm with TaGiTeD methods
and our methods needed acceptable time in each iteration.

Figure 5: RunTime of Each Iteration Comparison

In addition, one key advantage of TaGiTeD is that it
can lead to clinically meaningful representations. In the set-
ting of solving hospitalization prediction using TaGiTeD-
Log (with K = 80), we had 80 meaningful phenotypes after
representation learning. Due to the space limitation, Table
4 shows the diagnoses and medicines of three phenotypes.
Clinical experts verified that the diagnoses of first pheno-
type is Chronic kidney related diseases, and the medicines
are required injections and preparations of Hemodialysis op-
eration or something controlling Renal failure. The second
phenotype represents that if a patient has a cold, he/she may
have the symptoms and take the medicines listed in Table
4. And the last phenotype is mainly for diabetes patients in
pregnancy.

Related Work

Representation Learning The performance of machine
learning methods heavily depends on the choice of data rep-
resentations (or features). Representation learning has be-
come a field in the machine learning community especially
in Speech Recognition (Hinton et al. 2012), Signal Process-
ing (Jos et al. 2012) and Natural Language Processing (Ben-
gio 2008). In this paper, we focused on the medical predic-
tion tasks on EHR data. Since EHR data only provides the
structured clinical data from which it is hard to learn medi-
cal concepts, we need an appropriate representation learning
method for EHR data.

The quest for AI is motivating the design to be more pow-
erful representation-learning algorithms. We first consider
the traditional feature extraction methods, principal compo-
nents analysis (PCA)(Roweis 1999) and Autoencoder (Hin-
ton and Zemel 1994). There are numerous examples of their
successful applications as feature representation schemes
(Coates and Ng 2011). Contractive Auto-Encoders (CAE),
proposed by (Rifai et al. 2011), follow up on Denoising
Auto-Encoders (DAE) and share a similar motivation of
learning robust representations. However, these state-of-the-
art representation learning methods are either very limited to
form deeper, more abstract representations or hard to under-
stand the meaning of representations which is important for
medical field.

Tensor Decomposition Therefore we use a natural de-
scription for EHR data to achieve good performance and
meaningful representation (Kolda and Gibson 2006). There
are many applications of tensor decomposition, like missing
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data imputation (Gandy, Recht, and Yamada 2011), feature
extraction (Phan and Cichocki 2010). Many works are also
proposed on improving the optimization algorithm of ten-
sor decomposition (Bhaskara et al. 2014; Kolda 2015). It
is desirable to impose a non-negativity constraint on tensor
factorizations in order to facilitate easier interpretation when
analyzing non-negative data (Welling and Weber 2001). (Chi
et al. 2011) proposed nonnegative CP alternation Possion re-
gression (CP-APR) model for the case of count data. Based
on this algorithm, (Ho, Ghosh, and Sun 2014) proposed
constrained CP-APR model by adding bias tensor.(Wang
et al. 2015b) proposed a constrained non-negative tensor
factorization by adding prior knowledge.(Chi et al. 2011;
Wang et al. 2015b) are both medical applications of tensor
for phenotyping which indicates that decomposed result is
interpretable in medical field. Based on(Chi et al. 2011), in
this paper, we focused not only on the predictive accuracy
but also the clinical meaning of learned representation.

Conclusion and Future Work

In this paper, we proposed a framework of supervised tensor
decomposition (TaGiTeD) which is guided by the predictive
tasks for representation learning. This framework is able to
learn abstract representation for specific prediction tasks and
achieve better preformance. Moreover, the learned represen-
tation can be seen as meaningful phenotypes that are help-
ful for clinicians. While EHR data also contains other aux-
iliary information, like demographic information and labo-
ratory results, it is helpful in some scenarios if we utilize
the auxiliary information in the process of tensor decompos-
tion. Like the approach of adding prior knowledge in Rubik
(Wang et al. 2015b), we can represent the information as ex-
tra matrics that sharing the same dimension with the tensor
and constrain the corresponding factor result. Futhermore,
our method is limited to a single prediction task by putting
constraints upon one dimension, and multi-task learning is
also a good avenue for addressing this limitation. We leave
these generalizations to future work.
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